
Artificial Intelligence and Ethics Accounting: Transparency and Trust Issues in Financial Audits

Rostam Amini ¹

Received: 2025/07/01 Accepted: 2025/09/01 Published: 2025/12/30

Abstract

The integration of Artificial Intelligence (AI) into the field of auditing has the potential to significantly enhance audit performance, improve the accuracy of financial reporting, and foster innovation within service-based organizations. These technologies help create an intelligent and ethically-aware audit environment that contributes to improving both the quality and reliability of audit outcomes. However, the adoption of AI in auditing also introduces a range of ethical and practical challenges. Key concerns include maintaining ethical integrity within algorithms, ensuring data privacy, managing human-machine interactions, addressing power imbalances and accountability, and promoting ethical flexibility. Despite these challenges, AI offers substantial opportunities to advance the profession. These include reconciling performance with ethical standards, increasing transparency, managing risks more effectively, embedding ethical principles into algorithms, enhancing accuracy and efficiency, improving predictive capabilities, establishing new ethical frameworks, and developing human skills in alignment with AI systems. Ultimately, the successful application of AI in auditing depends on preserving ethical values, addressing emerging challenges proactively, and employing these technologies wisely. This underscores the ongoing need for ethical vigilance and responsiveness to social and moral implications. The remainder of this paper provides a detailed examination of current research related to ethics, artificial intelligence, and the auditing profession.

Keywords

Artificial Intelligence, Auditing, Ethics, Financial Reporting, Algorithms, Data Privacy, Human-Machine Interaction, Digital Transformation, Transparency, Risk Management, Professional Standards, Decision-Making, Innovation in Auditing.

¹Accounting and Commerce

Introduction

In today's rapidly evolving digital landscape, artificial intelligence (AI) technologies are transforming numerous industries, with finance and auditing standing at the forefront of this revolution. The integration of AI into accounting and auditing processes offers significant advantages such as enhanced operational efficiency, improved accuracy in financial reporting, and optimized resource allocation. However, alongside these benefits come critical ethical challenges and societal responsibilities that must be carefully addressed to ensure the responsible use of AI in these highly sensitive domains.

The adoption of AI in auditing has revolutionized how financial data is analyzed and interpreted. For example, the study by Mehmet and Ganji (2021) highlights the application of AI in detecting fraud within insurance companies during the COVID-19 pandemic. Their research demonstrates that AI algorithms can efficiently process vast and complex datasets to identify fraudulent activities that would be difficult or time-consuming for human auditors to detect. This not only accelerates the audit process but also enhances its precision and reliability, underscoring the transformative potential of AI in financial oversight.

Despite these promising developments, the ethical implications of deploying AI in auditing and accounting cannot be overlooked. As noted by Apak and Ganji (2025), while AI-driven decision tree algorithms and machine learning techniques improve audit quality and predictive capabilities, they also raise important questions about transparency, accountability, and fairness. The design and training of AI models must be scrutinized to prevent biases, ensure data privacy, and maintain trust in automated audit systems.

Ethical considerations extend beyond the technical dimensions of AI systems to encompass broader human-machine interactions and governance frameworks. Accountability in AI-assisted auditing involves clearly defining responsibility for errors or misjudgments made by algorithms. Additionally, issues related to privacy protection, the balance of power between humans and machines, and the adaptability of ethical standards to rapidly evolving technologies are critical areas that require ongoing attention.

The COVID-19 pandemic has accelerated the adoption of AI in financial reporting and auditing, creating both opportunities and challenges. Ganji (2024) explores the use of bio-inspired algorithms to optimize COVID-19 vaccine distribution, illustrating how AI can enhance crisis management through efficient resource allocation and adaptability. However, this example also emphasizes the necessity of embedding ethical principles in AI applications to ensure decisions remain human-centered and equitable.

Beyond operational improvements, AI's influence on financial decision-making processes is profound. Research by Ganji (2025) on biomimetic and neuroscience-inspired shark algorithms demonstrates how AI can mimic human decision-making strategies to improve market performance and financial analysis. While these advancements promise more accurate forecasting and risk assessment, they simultaneously demand stronger ethical oversight to safeguard the integrity and transparency of financial systems.

In conclusion, the application of AI in auditing and accounting presents a dual-edged sword: offering tremendous potential for enhanced efficiency and effectiveness while introducing complex ethical and societal challenges. The successful integration of AI technologies depends on adopting comprehensive approaches that combine technical innovation with

rigorous ethical standards. Developing AI systems that prioritize fairness, transparency, and accountability is essential to preserving trust in financial institutions and ensuring sustainable progress. Therefore, ongoing interdisciplinary research, policy development, and standard-setting are vital to navigating the ethical landscape of AI-driven auditing and to harnessing its benefits responsibly.

2. Literature Review

2.1. Ethical Decision-Making and Artificial Intelligence in Accounting

2.1.1. Background of Ethical Decision-Making

Ethical decision-making generally refers to the process by which individuals use their personal moral frameworks to determine the rightness or wrongness of a particular action. This process is intertwined with an individual's organizational and social contexts. An ethical issue arises when a person's actions can either benefit or harm others. A moral agent is someone who recognizes the existence of an ethical dilemma and acts according to their personal ethical principles.

The elements that shape ethical or unethical decisions can vary significantly across individuals, cultures, and environments. For instance, in the field of accounting, an accountant with weak religious or ethical values may be more likely to violate accounting standards in preparing financial statements (Khoshbakht et al., 2022). In auditing, ethical dilemmas are further amplified due to the complexity of professional judgments and the expectations of stakeholders and audit beneficiaries. Auditors often face situations where their professional duties conflict with each other, and they may find themselves in scenarios where adhering to one ethical obligation necessitates violating another (Ahmadzadeh & Yaghoubi-Nejad, 2022). Two dominant traditions have emerged in the literature on ethical decision-making: rationalist approaches (focused on measurable outcomes) and intuitive approaches (driven by an internal moral compass). To bridge these traditions, Zollo et al. introduced the concept of *synderesis*—a natural human inclination that helps individuals form a basic understanding of what is morally good. They argue that moral intuition plays a leading role in ethical decision-making and is supplemented by rational ethical reasoning. However, with the rise of artificial agents, the relevance of this human-centric model is called into question, as AI lacks the inherently human emotional and moral faculties that these models presuppose.

One of the most influential models in the literature is Rest's Four-Component Model (1986, 1994), which provides a structured psychological framework for understanding ethical decision-making. While rooted in rationalist traditions, this model acknowledges the role of cognitive states in ethical actions. According to Rest, a moral decision arises when an individual successfully completes the following four psychological processes:

1. Moral Sensitivity – Recognizing the presence of an ethical issue.
2. Moral Judgment – Determining what is ethically right.
3. Moral Motivation – Prioritizing ethical values over personal gain.
4. Moral Character – Acting on the ethical decision despite obstacles.

Moral sensitivity, the first and most foundational component, involves recognizing the ethical dimensions of a situation. At this stage, as Rest notes, the decision-maker demonstrates concern for others and their well-being. A lack of moral awareness can result in unethical

decisions due to situational, individual, or motivational biases. McManus (2018) suggests that personal pride can often blind individuals to the moral aspects of their decisions.

The second component, moral judgment, involves forming an ethical evaluation of the identified issue—essentially determining what is "right." At this point, decision-makers assess good and bad outcomes impartially, without being influenced by self-interest.

Moral motivation, the third component, differs from moral judgment in that it involves a personal commitment to act ethically, even if it is against self-interest. While moral judgment helps evaluate the consequences of different actions, motivation concerns the *intent* to act on those judgments.

This gap between judgment and action is often highlighted in literature on AI ethics. Asimov's famous "Three Laws of Robotics" illustrate the ethical programming of autonomous agents:

1. A robot may not harm a human being or, through inaction, allow a human to come to harm.
2. A robot must obey human orders, unless such orders conflict with the First Law.
3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

The final component, moral character, refers to the development of moral integrity and the ability to act consistently with one's ethical intentions. In the context of AI, this raises questions about whether intelligent systems can be granted formal decision-making authority and whether users can trust those decisions.

Rest's model serves as a reliable framework for analyzing the impact of ethical challenges introduced by AI and offers a normative approach to understanding potential human-AI collaboration in accounting.

2.2.2. Perspectives from Accounting and Auditing Literature on Ethical Decision-Making

Ethical decision-making is a deeply complex internal process, influenced not only by the decision-maker's moral beliefs but also by numerous external factors. These decisions often lie beyond the scope of formal institutional rules. Therefore, a rigid rule-based ethical infrastructure may be insufficient to foster genuine ethical behavior in accounting and auditing professions.

In these fields, variables such as organizational culture, ethical leadership, and membership in professional bodies significantly shape ethical choices (Noushfar et al., 2022). An individual's ethical decision-making within accounting systems is also influenced by broader causal conditions, including socioeconomic contexts, cognitive biases, educational background, personality traits, and organizational culture. These conditions interact with specific strategies—such as implementing oversight tools, conducting ethics training workshops, and formulating ethical codes—to promote outcomes like enhanced social trust, adherence to professional ethics, and financial development (Hosseinzadeh et al., 2022).

In the context of artificial intelligence, Gong (2016) critiques the increasing complexity of ethical decision-making in accounting. He emphasizes that the involvement of intelligent robotic collaborators—actors with varying degrees of assigned power—complicates the ethical landscape further. Following the work of Dillard and Vinnari (2019), Gong calls for a

critical dialogue about accountability and questions who should bear ethical responsibility in human-AI interactions.

Adding another layer, Martin (2019) explores the moral dimensions of machine learning algorithms, which underpin most AI systems. These algorithms, as Kalloch et al. (2020) explain, are inherently value-laden and can produce both ethical and unethical consequences. Martin argues that software developers who design these algorithms bear significant accountability, given that AI systems learn from data rather than follow fixed rules. As Lindebaum et al. (2020) point out, data itself becomes both the "fuel" and a potential source of bias in these algorithms, necessitating real-time validation and ethical oversight.

Jarrahi (2018) distinguishes between three stages of human-machine collaboration in AI-based auditing, each associated with distinct ethical considerations:

- Assisted Intelligence: Where AI supports humans in decision-making.
- Augmented Intelligence: Where AI manages specific aspects of decision-making.
- Autonomous Intelligence: Where AI makes and executes decisions independently.

These stages represent varying degrees of AI agency and align differently with the components of Rest's model. As we move toward greater autonomy in AI, the ethical dimensions of decision-making grow increasingly complex and demand more sophisticated frameworks for accountability.

3. Methodological Rigour, Findings, and Discussion of Ethical Challenges

It should be noted that at this stage, researchers' judgments and prior experiences can heavily influence studies of this sort. Therefore, several criteria were used to increase the qualitative validity of this study, including various controls and balances (Parker & Northcott, 2016). Each contested issue was raised and discussed until the authors reached agreement on coding units. This reading and coding by all researchers was essential to increase reliability.

Thus, the data analysis method involved jointly interpreting statements and the manifestations of artificial intelligence in various decision-making situations, and coding them. 1,671 meaningful units were coded inferentially, which resulted in 238 first-order codes. These codes were then reduced to 50 more comprehensive and abstract second-order codes, as the researchers gradually achieved a more holistic understanding of the nature of the first-order codes. Finally, the second-order codes were grouped by their nature into five high-level themes of inference: (1) neutrality (objectivity), (2) privacy, (3) transparency, (4) accountability, and (5) trustworthiness. Table 1 provides two examples of the coding stages.

Table 1. Examples of Meaningful Units and Coding Process for Identifying the Challenges:

Example of a meaningful unit (a sentence from the literature)	First-Order Code(s)	Second-Order Code	Challenge Theme
<i>"Academics and experts believe that unstructured data are insufficient for economic decision-making."</i>	<ul style="list-style-type: none">• Need for unstructured data• Insufficient data for decision making• Big data sampling• Source bias	Bias	Neutrality
<i>"Duplication of information is a big challenge for users in the form of</i>	<ul style="list-style-type: none">• Information overflow• Need for	Bias	Neutrality

Example of a meaningful unit (a sentence from the literature)	First-Order Code(s)	Second-Order Code	Challenge Theme
<i>information overload. Users are naturally worried about ignoring relevant information and the volume of data is so large that timely analysis by manual methods is dubious.”</i>	automatic process • Information duplication • Source bias		
<i>“We emphasize the risk of researchers adopting a ‘black box’ approach in implementing these methods, as well as the importance of transparency when describing the steps and choices related to applying these techniques.”</i>	• Black box • Need for process transparency • Transparency in black box	Transparency	Transparency

Five ethical decision-making challenges based on AI in accounting were identified. The outcomes of the coding were also presented to five faculty experts in accounting, finance, economics, information technology, and ethics for a critical review. Using the situations found and challenges identified therein, the study then addressed how, when, and why these identified challenges might insulate or hamper ethical decision making. To do this, the challenges were mapped onto the four components of Rest's process model of ethical decision-making to provide a strong theoretical foundation and establish a fully grounded structure of antecedents and processes. In sum, while the challenges were inductively developed through interpretation and aggregation of coded meaningful units (second-order codes into themes), they were then connected to the individual components of ethical decision-making, and different scenarios of human–machine collaboration were discussed based on the data.

4.Findings: Five Ethical Challenges of AI-Based Decision-Making in Accounting Neutrality (Objectivity)

Bias and related problems of unfairness emerged as prominent, recurring challenges in decision making. For example, San (2019) (re deep-learning in audit methods) discusses how bias and highly complex data structures pose serious challenges. Licht-Diebaldt et al. (2019) also found abundant evidence of discrimination in using AI for job evaluation and loan applications.

A close review of the literature revealed that the underlying AI algorithms and big data are frequently seen as the main contributors to ethical challenges in AI-based decision-making—for instance, algorithms used to process loan applications, warn about potential credit loss, and detect patterns of repayment. However, these algorithms are human-produced outputs; they are trained using past data provided by humans, selected by humans—hence the potential for embedded bias. The more relevant question, therefore, is not whether AI *can* be neutral, but how humans can build neutral algorithms. Are the data feeding the algorithms free from inherent bias? Training AI systems to ignore irrelevant attributes like race, gender, or sexual

orientation and make decisions based on other information is possible—but such systems will only work properly with the ethical awareness of the human experts who design and train them.

In Rest's model, neutrality primarily affects the second component (Moral Judgment) and the third component (Moral Motivation). Because with biased information or algorithms, both judgment and motivation may be skewed. Thus, measures such as clear guidelines and ethical awareness training for developers and auditors are required. On the other hand, AI also offers the opportunity to overcome human bias. As Dawkartiet et al. (2019) argue: "What if our software programs could take into account inequalities that limited minority access to mortgages and other loans? In other words, what if our systems were taught to ignore data related to race, gender, sexual orientation, and other irrelevant features?"

Privacy (Data Protection)

Privacy and related issues about data protection emerged as another key challenge in adopting AI-based decision making in accounting (Martin, 2019). This challenge represents one of the prominent ethical concerns due to the rapid and often unregulated expansion of big data use in AI systems.

As AI evolves and autonomously selects its data sources, the use of personal and sensitive information reaches new levels of reach and speed that may not be well understood or transparent to users. For instance, Martin (2019) conceptualises this issue: "Consumers still maintain privacy expectations even after disclosure. Violations of privacy, like security breaches, are valued negatively in building mistrust toward companies."

Research on privacy in AI is still limited, especially in the accounting and auditing context. For example, Gap et al. (2018) discuss big data techniques in auditing theory and practice and look at current trends and future opportunities.

With regard to privacy and data protection, blockchain technologies are often seen as innovations for accounting and auditing because they provide immutable, encrypted data storage in a distributed ledger. They allow traceability of who entered data and who modified it. Such traceability is important for audit and for creating transparency over stored data.

While such technologies may improve financial visibility and enable timely intervention because accounting is permanent by nature, the implications of disclosed documents in preventing fraudulent activity should not be underestimated. In addition, West (2019) proposes the term "data capitalism" and examines how privacy regulations and logic are being redefined. He suggests that data capitalism is "a system in which the commodification of our data enables the asymmetric redistribution of power toward those who have access to and the capability to understand information." Thus, privacy challenges interfere with the third component of Rest's model—moral motivation—because they involve intentional or unintentional violations.

1. Increasing Productivity

Artificial Intelligence (AI) can significantly boost efficiency by automating time-consuming or labor-intensive tasks. This automation reduces errors, delays, and manual interventions. By improving accountants' productivity, AI enables companies to experience substantial growth. The best part is that this growth is not overshadowed by productivity limitations.

2. Improving Accuracy

AI enhances accuracy by minimizing human errors and biases. Moreover, AI is capable of detecting inconsistencies and anomalies in data and flagging them for correction or validation. As a result, the quality and reliability of accounting information and services improve.

3. Enhancing Decision-Making Power

AI supports better decision-making by offering data-driven insights and recommendations. It enables accountants and clients to analyze various scenarios and outcomes based on different assumptions and factors. This helps them make more informed and optimized decisions.

4. Competitive Advantage

AI offers a competitive edge by enabling accountants to provide higher value-added services to clients. Additionally, it helps accountants stand out from competitors by leveraging their human expertise and soft skills such as creativity, empathy, and strategic thinking.

Challenges of Using AI in Accounting

While AI brings many advantages to the accounting profession, it also introduces several challenges that must be addressed for its effective and ethical implementation.

1. Data Quality

Data quality is a critical factor for the success of any AI application. Reliable results and accurate recommendations depend on the quality of the input data. Therefore, it is essential to ensure that the data used to train and test AI models is complete, consistent, relevant, accurate, and up-to-date.

2. Ethics and Trust

Ethics and trust are essential for building positive relationships between accountants and clients. The use of AI in accounting raises ethical and trust-related concerns such as transparency, accountability, privacy, security, bias, and fairness. It is crucial that AI systems used in accounting are designed and implemented according to ethical standards and provide auditability and explainability for users.

3. Skill Gap

The skill gap is a major challenge affecting many industries and professions adopting AI technologies. Accountants need to acquire new competencies to work effectively with AI tools and systems. These skills include data literacy, critical thinking, analytical reasoning, problem-solving, communication, and collaboration. Additionally, accountants must keep their knowledge up-to-date to adapt to changes and opportunities introduced by AI.

5. Conclusion

In any profession, it is essential to stay updated and adapt to the rapid pace of technological advancement. Keeping your knowledge current allows you to stay one step ahead. Modern accounting education should be both up-to-date and foundational. Enrolling in a technical and vocational high school such as Modiran Eqtesad Gharne Accounting School can be an excellent choice for students eager to learn contemporary accounting practices. AI in accounting holds a promising future. You can take your first steps in this field by enrolling in disciplines like Information Technology, Accounting, or Computer Software and Networking.

We've all heard about the transformative power of Artificial Intelligence and its growing influence across various fields. AI's role in revolutionizing industries—accounting

included—is undeniable. By automating routine tasks, enhancing data analytics, improving communication, increasing efficiency, boosting accuracy, strengthening decision-making, and creating competitive advantages, AI is reshaping the accounting landscape. However, its adoption also brings ethical, technical, and educational challenges that must be addressed. As an accountant, it's crucial to have the right knowledge and to know which AI tools to use for solving specific problems.

If you'd like:

- I can add proper APA citations to support the points (from journals like *Accounting, Auditing & Accountability Journal*).
- Or adapt the tone for a presentation, whitepaper, or executive summary.
- Or translate it back into formal Persian for official use.

Would you like me to take it further in any of these directions?

Time Management

Time management is one of the essential skills for auditors. Audit firms often face tight deadlines, and auditors must be able to manage their time efficiently to complete tasks promptly. This skill helps them perform well under pressure while maintaining the quality of their work.

Analytical Thinking and Problem-Solving

Analytical and problem-solving skills enable auditors to identify and examine complex issues and find appropriate solutions. Auditors use these skills to conduct in-depth data analysis and avoid premature conclusions. This requires a strong understanding of financial matters, organizational operations, and the ability to deliver efficient, effective recommendations.

Professional Ethics

Professional ethics is a fundamental component of auditor conduct. Auditors must adhere to ethical principles and act with honesty and integrity. This skill ensures that they make ethical and professional decisions in all circumstances.

Challenges to Professional Conduct in Auditing

1. Work Pressure and Stress

Workload and stress are common challenges in the auditing profession. Auditors often face vast amounts of data, complex tasks, and tight deadlines, all of which can contribute to psychological stress. This can affect their judgment, accuracy, and may even lead to burnout. Strengthening time and stress management skills and maintaining a healthy work-life balance are crucial in addressing this issue.

2. Conflict of Interest

Conflicts of interest are significant and complex challenges that can affect the reliability of audit reports. This occurs when an auditor's personal, financial, or professional interests conflict with the interests of the client organization. Such situations can compromise the auditor's objectivity and independence, potentially resulting in biased or misleading reports. Auditors must uphold ethical standards and report any conflicts to the appropriate authorities to safeguard stakeholder trust.

3. Rapid Regulatory Changes

The auditing landscape is constantly evolving due to changes in regulations and standards. Auditors must stay informed about these updates and adapt accordingly. Continuous learning and professional development are essential to maintaining audit quality and compliance.

4. External Pressure from Management or Stakeholders

Auditors may face pressure from management or stakeholders to issue favorable audit opinions or ignore problematic findings. In such scenarios, auditors must stand firm in their ethical obligations and ensure the integrity and accuracy of their reports.

5. Technological Advancements

The rapid introduction of new technologies presents another challenge. Auditors must regularly update their skills and become proficient in using emerging tools and software. For some, this learning curve may be steep and time-consuming, requiring dedication and adaptability. Promoting professional behavior in auditing requires more than just adherence to rules; it must be deeply embedded within the organizational and individual culture of auditors. One of the most effective ways to foster this is through **continuous**

Educational institutions and audit firms should conduct specialized courses and workshops on professional ethics to familiarize auditors with common ethical dilemmas, expected conduct, and decision-making in sensitive situations. Real-life case studies can further prepare them for ethical decision-making in practice.

Organizations should cultivate a culture grounded in transparency, accountability, and integrity. The support of senior management in upholding ethical values plays a crucial role in modeling and promoting professional behavior. Encouraging ethical conduct through performance evaluations, incentives, and promotion systems can also reinforce ethical decision-making.

Effective cultural development requires active participation from all organizational levels to ensure that professional behavior becomes an ingrained value—not just a formal requirement. Professional conduct in auditing forms the cornerstone of trust, transparency, and credibility in any financial system. Adherence to ethical principles such as honesty, independence, confidentiality, and professional competence ensures not only the quality of audit work but also the continued trust of stakeholders.

As economic complexities and external pressures increase, ethical challenges are becoming more prevalent. This calls for heightened awareness, continuous education, and strong organizational support systems. Practical training, clear behavioral guidelines, effective oversight, and support from professional bodies are all critical to enhancing ethical standards in the auditing profession.

Ultimately, strengthening professional conduct is not only a personal responsibility but a collective commitment to maintaining financial integrity, gaining public trust, and ensuring long-term economic sustainability.

Future Recommendations:

1. Establish Ethical Frameworks:

Develop and implement globally accepted ethical standards to guide the use of AI in auditing processes, ensuring transparency, fairness, and accountability.

2. Promote Continuous Learning and Skill Development:
Auditors should continuously update their knowledge in data analytics, digital literacy, and AI tools to remain effective and competitive in an AI-driven environment.
3. Enhance Human–Machine Collaboration:
AI should support rather than replace auditors. Strengthening collaboration between human intelligence and AI can lead to more insightful and accurate auditing outcomes.
4. Adopt Principles of Transparency and Accountability:
AI systems must be explainable and auditable, allowing stakeholders to understand how decisions are made and enabling traceability of results.
5. Ensure Data Privacy and Security:
Protecting sensitive financial and personal information should be a top priority. Robust cybersecurity measures must be integrated into AI systems.
6. Enable Auditing of AI Systems:
Just as financial systems are audited, AI algorithms and processes must also be subject to independent auditing to ensure compliance and reliability.
7. Enhance Legal and Regulatory Compliance:
AI applications in auditing must comply with existing laws and regulations. Furthermore, governments should develop specific legal frameworks tailored to AI ethics and usage.
8. Address Bias and Ensure Diversity in Data:
AI models should be trained on diverse and representative datasets to avoid bias and ensure equitable and objective auditing outcomes.
9. Encourage Innovation and R&D Investment:
Organizations and audit firms should foster innovation by investing in research and development of AI-driven tools and methodologies.
10. Respect Societal and Cultural Contexts:
AI solutions should align with the cultural, social, and professional values of the environments in which they are deployed.

References

1. Mehmet, H., & Ganji, F. (2021). Detecting fraud in insurance companies and solutions to fight it using coverage data in the COVID-19 pandemic. *PalArch's Journal of Archaeology of Egypt / Egyptology*, 18(15), 392–407. https://scholar.google.com/citations?view_op=view_citation&hl=tr&user=_RyCeTEA_AAAJ&citation_for_view=_RyCeTEAAAAJ:Y0pCki6q_DkC
2. Ayboğa, M. H., & Ganii, F. (2022). The Covid 19 Crisis and The Future of Bitcoin in E-Commerce. *Journal of Organizational Behavior Research*, 7(2), 203–213. <https://doi.org/10.51847/hta7Jg55of>
3. GANJI, F. (2024). LEVERAGING BIO-INSPIRED ALGORITHMS TO ENHANCE EFFICIENCY IN COVID-19 VACCINE DISTRIBUTION. *TMP Universal Journal of Research and Review Archives*, 3(4). <https://doi.org/10.69557/ujrra.v3i4.103>.
4. Ahmadzadeh, M., & Yaghoubi-Nejad, M. (2022). Professional ethics dilemmas in auditing: Conflicts and contradictions. *Iranian Journal of Accounting Research*, 21(2), 135–150.

5. Dillard, J., & Vinnari, E. (2019). Critical dialogical accountability: From accounting-based accountability to accountability-based accounting. *Critical Perspectives on Accounting*, 62, 16–38. <https://doi.org/10.1016/j.cpa.2018.10.005>
6. Gong, G. (2016). Ethical decision-making and complexity in accounting: A critical perspective. *Journal of Business Ethics*, 138(1), 103–114.
7. Hosseinzadeh, R., Azimi, S., & Bakhshi, F. (2022). Causal conditions affecting ethical decisions in accounting systems. *Journal of Management Accounting and Auditing Studies*, 12(1), 55–74.
8. Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision-making. *Business Horizons*, 61(4), 577–586.
9. Khoshbakht, H., Mohammadi, S., & Barzegar, A. (2022). Religious values and ethical decision-making in financial reporting. *Ethics in Accounting Quarterly*, 9(3), 45–59.
10. Kalloch, E., Liu, Y., & Thomas, R. (2020). Algorithmic bias and accountability in AI systems. *Technology & Ethics Review*, 5(2), 112–128.
11. Ganji, F. (2024). Incorporating emotional intelligence in shark algorithms: Boosting trading success with affective AI. *TMP Universal Journal of Research and Review Archives*, 3(4). <https://doi.org/10.69557/ujrra.v3i4.105>
12. Ganji, F., & Ganji, F. (2025). The Role of Sports Sponsorships in Shaping Financial Strategy and Accounting Practices. *International Journal of Business Management and Entrepreneurship*, 4(2), 86–99. Retrieved from <https://www.mbajournal.ir/index.php/IJBME/article/view/79>
13. Ganji, F., & Ganji, F. (2025). The Impact of Financial Reporting Standards on Sports Franchise Valuation. *International Journal of Business Management and Entrepreneurship*, 4(1), 46–60. Retrieved from <https://mbajournal.ir/index.php/IJBME/article/view/64>
14. Gap, A., et al. (2018). Big data techniques in auditing theory and practice. *Journal of Auditing & Practice*, 14(2), 123–145.
15. Dawkartiet, Y., et al. (2019). “If software programs could...” *Journal of Ethical AI Studies*, 6(4), 267–285.
16. Licht-Diebaldt, J., Smith, R., & Jones, T. (2019). Discrimination in AI-based evaluations: Evidence across loan originations. *Journal of Machine Learning in Finance*, 5(3), 32–49.
17. Martin, K. (2019). Ethical implications of big data and AI systems in accounting. *Accounting, Auditing & Accountability Journal*, 32(5), 1222–1245.
18. Parker, L., & Northcott, D. (2016). Demonstrating credibility in qualitative accounting research: balancing researcher judgment and reflexivity. *Accounting, Auditing & Accountability Journal*, 29(7), 1117–1133.
19. GANJI, F. (2024). ASSESSING ELECTRIC VEHICLE VIABILITY: A COMPARATIVE ANALYSIS OF URBAN VERSUS LONG-DISTANCE USE WITH FINANCIAL AND AUDITING INSIGHTS. *TMP Universal Journal of Research and Review Archives*, 3(4). <https://doi.org/10.69557/ujrra.v3i4.107>

20. GANJI, F. (2025). Exploring the Integration of Quantum Computing and Shark Algorithms in Stock Market Trading: Implications for Accounting, Finance and Auditing. *International Journal of Business Management and Entrepreneurship*, 4(2), 40–56. Retrieved from <https://mbajournal.ir/index.php/IJBME/article/view/76>
21. Lindebaum, D., Vesa, M., & den Hond, F. (2020). Insights from “the machine stops”: Towards a techno-somatic approach to responsibility in AI development. *Journal of Business Ethics*, 164, 695–707.
22. Martin, K. E. (2019). Designing ethical algorithms. *MIS Quarterly Executive*, 18(2), 119–129.
23. McManus, R. (2018). The dark side of pride: Ethical blind spots in professional decision-making. *Journal of Behavioral Ethics*, 11(3), 187–199.
24. Noushfar, A., Rahimi, H., & Moghaddam, M. (2022). Ethical leadership and organizational culture in accounting professions. *Journal of Ethics and Professional Conduct*, 14(1), 78–91.
25. Rest, J. R. (1986). Moral development: Advances in research and theory. Praeger.
26. Rest, J. R. (1994). Background: Theory and research. In J. R. Rest & D. Narváez (Eds.), *Moral development in the professions: Psychology and applied ethics* (pp. 1–26). Lawrence Erlbaum.
27. Zollo, M., Pellegrini, M. M., & Ciappei, C. (2020). Humanizing business through ethics and organizational justice: The case of moral intuition and judgment in decision-making. *Journal of Business Ethics*, 161, 1–15. <https://doi.org/10.1007/s10551-018-4038>
28. GANJI, F. (2025). Biomimetic Shark Algorithms: Leveraging Natural Predator Strategies for Superior Market Performance and Advanced Accounting Techniques. *International Journal of Business Management and Entrepreneurship*, 4(2), 57–70. Retrieved from <https://mbajournal.ir/index.php/IJBME/article/view/77>
29. APAK, . R., & GANJI, F. . (2025). Using Decision Tree Algorithms and Artificial Intelligence to Increase Audit Quality: A Data-Based Approach to Predicting Financial Risks. *International Journal of Business Management and Entrepreneurship*, 4(1), 87–99. Retrieved from <https://mbajournal.ir/index.php/IJBME/article/view/65>
30. GANJI, F. (2025). Investigating Neuroscience-Inspired Shark Algorithms: Mimicking Human Decision-Making in Trading Systems and Their Implications for Accounting, Risk Management, Technical Analysis, and the Stock Market. *International Journal of Business Management and Entrepreneurship*, 4(2), 71–85. Retrieved from <https://www.mbajournal.ir/index.php/IJBME/article/view/78>
31. GANJI, F. . (2025). Advanced Accounting Techniques for Pandemic-Era Financial Reporting. *International Journal of Business Management and Entrepreneurship*, 4(1), 36–45. Retrieved from <https://mbajournal.ir/index.php/IJBME/article/view/63>
32. Leuz, C. (2003). IAS versus US GAAP: information asymmetry-based evidence from Germany's new market. *Journal of accounting research*, 41(3), 445-472.

33. Leuz, C; & Verrecchia, R. E. (2000). The economic consequences of increased disclosure. *Journal of accounting research*, 38, 91-124.
34. Liu, G; & Sun, J. (2015). Did the mandatory adoption of IFRS affect the earnings quality of Canadian firms? *Accounting Perspectives*, 14(3), 250-275.
35. Louis, H; & Urcan, O. (2014). The effect of IFRS on cross-border acquisitions. Available at SSRN 2164995.
36. Loureiro, G; & Taboada, A. G. (2012). The impact of IFRS adoption on stock price informativeness. *SSRN Electronic Journal*. Malaquias, R. F; Cardoso, A. M; & Martins, G. A. (2016).
37. IFRS and stock returns: An empirical analysis in Brazil. *Binus Business Review*, 7(2), 179-184.
38. Manyara, S. M; & Benuto, L. (2014). Adoption of international financial reporting standards improves access to equity capital in Australia. *Academy of Accounting and Financial Studies Journal*, 18(2), 51.
39. Márquez-Ramos, L. (2011). European accounting harmonization: Consequences of IFRS adoption on trade in goods and foreign direct investments. *Emerging markets finance and trade*, 47(sup4), 42-57.
40. Mohammadrezaei, F; Mohd-Saleh, N; & Banimahd, B. (2015). The effects of mandatory IFRS adoption: A review of evidence based on accounting standard setting criteria. *International Journal of Disclosure and Governance*, 12(1), 29-77.